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VLIW ASIPsprovideanattractivesolutionfor increasinglyperva-
sive real-timemultimediaandsignalprocessingembeddedappli-
cations.In this paperwe proposeanalgorithmto supporttrade-off
explorationduringtheearlyphasesof thedesign/specializationof
VLIW ASIPswith clustereddatapaths.For purposesof an early
explorationstep,wedefineaparameterizedfamilyof clustereddat-
apathsD ! m" n#�" wherem andn denoteinterconnectcapacityand
clustercapacityconstraintson thefamily. Givena kernel,thepro-
posedalgorithmexploresthespaceof feasibleclustereddatapaths
andreturns:adatapathconfiguration;abindingandschedulingfor
the operations;anda correspondingestimatefor the bestachiev-
ablelatency over thespecifiedfamily. Moreover, weshow how the
parametersm andn, aswell asa target latencyoptionallyspecified
by thedesigner, canbeusedto effectively exploretrade-offs among
delay, power/energy, andlatency. Extensive empiricalevidenceis
providedshowing thattheproposedapproachis strikingly effective
at attackingthiscomplex optimizationproblem.
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Realtimemultimediaandsignalprocessingembeddedapplications
oftenspendmostof their cyclesexecutinga few time critical code
segments(kernels)with well definedcharacteristics,makingthem
amenableto processorspecialization.Moreover, thesecomputation
intensivekernelsoftenexhibit ahighdegreeof inherentinstruction
level parallelism(ILP). Thus,VeryLargeInstructionWord(VLIW)
ApplicationSpecificInstructionSetProcessors(ASIPs)providean
attractivesolutionfor suchembeddedapplications.

Traditionally, thedatapathsof VLIW machineshavebeenbased
on a singleregisterfile sharedby all functionalunits (FUs). The
centralregisterfile providesinternalstorageaswell asswitching,
i.e., interconnectionamongtheFUsandto/from thememorysys-
tem. Unfortunately, this simpleorganizationdoesnot scalewell
with thelargenumberof functionalunitstypically requiredto take
advantageof the ILP presentin the embeddedapplicationsof in-
terest.Indeed,it hasbeenshown in [14] that,for N FUsconnected
to a registerfile, theareaof theregisterfile grows asN3, thedelay
asN31 2, andpower dissipationasN3. In short,asthe numberof
FUs increases,internalstorageandcommunicationbetweenFUs
quickly becomesthedominant,if notprohibitive factor, in termsof
delay, powerdissipation,andarea.

A key observation is that thedelay, power dissipationandarea
associatedwith the storageorganizationcan be dramaticallyre-
ducedby restrictingthe connectivity betweenFUs and registers,
sothateachFU canonly readandwrite from/toa limited subsetof
registers.[14] Thusa key dimensionof VLIW ASIP specialization2
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is clustering, i.e., thedevelopmentof datapathscomprisedof clus-
tersof FUs connectedto local storage(the cluster’s registerfile).
Althoughby moving from acentralizedto adistributedregisterfile
organizationonecanreapsignificantdelay, powerandarea sav-
ings,this typeof specializationmaycomeata cost.Onemayhave
to transferdataamongtheseregisterfiles (i.e., datapathclusters),
possiblyresultingin increasedlatency.

Moreconcretely, considerafamilyof clustereddatapathswhere-
in eachclusterhasno morethana givennumberof FUs,irrespec-
tive of type. We shall refer to this constraintasa clustercapacity
constraint. Intuitively, asthe clustercapacitydecreases(andthus
thenumberof portsandsizeof theassociatedregisterfile decrease),
one expectscombinationaldelayas well as power dissipationto
decrease,while the numberof clock cycles (latency) requiredto
executea given kernel to increase.In the limit, whencomparing
aclusteredmachineto ahypotheticalcentralizedmachinewith the
samenumberof FUs,oneexpectsto beableto sustainhigherclock
ratesin theclusteredmachine,but at thecostof increasedlatency,
dueto theneedto movedataamongregisterfiles.

Moreover, asclustercapacitydecreases,onealsoexpectspow-
er dissipationto decreasewith respectto thecentralizedmachine.
Indeed,clusteredmachineswouldhavelocalregisterfilesthathave
fewer portsandaresmallerthanthesingleregisterfile of thecen-
tralizedmachine,thusachieving a lesscostly(local) switchingin-
side eachcluster. Unfortunately, switching may also be needed
amongclusters,i.e.,theremaybeaneedto performmove(or copy)
operationsacrossregisterfiles of differentclusters,with a corre-
spondingundesirableeffect in energy consumption

Notethatwhileperformanceandpower/energy areamajorcon-
cernin embeddedapplications,siliconarea(perse)is notnecessar-
ily aconcern,sincewith today’s levelsof integrationonecancost-
effectively placelarge numbersof transistorson a singlechip[1,
13]. Thus,in exploring thedesignspacewith respectto theimpact
on performanceand power/energy of different clustercapacities,
onecanallow for anunboundednumberof clusters– at leastdur-
ing theearlyphasesof theexploration. In fact,asobserved in [5],
in signalprocessingapplicationswith high ILP, in orderto achieve
high throughputoneshouldexpectdatapathswith a large number
of functional resourcesand low resourcesharing. Thus, placing
an upperboundon the total numberof functional resourceswas
consideredinadequate.Oneshouldhowever considera constraint
on the interconnectcapacity, sincecongestion(during datatrans-
fersacrossclusters)mayleadto majorperformancepenalties,and
the interconnectstructurehasa significantimpacton the relevant
figuresof meritdiscussedabove (i.e.,delayandpower/energy).

In summary, whenconsideringthespecializationof a datapath
to a givenkernel,oneshouldseeksolutionswith a (possiblylarge)
numberof clustersworking (quasi-)independently. Notethatsuch
configurationsarethe“ideal” ones,in thatthey decreasepowerand
delay, by taking advantageof locality in the computations,while
incurringno(significant)latency/energy penaltiesdueto switching



acrossclusters.
In3 this paperwe proposeanalgorithmfor estimatingthemin-

imum latency achievableby a family of clustered machines– the
family isdefinedby theclusterandinterconnectcapacityconstraints
discussedabove. In particular, given a kernel andcapacitycon-
straints,our algorithmexploresthespaceof feasibleclustereddat-
apathsandreturns:(1) an “optimal” datapathconfiguration;(2) a
binding andschedulingfor the operations;and(3) a correspond-
ing estimatefor theminimumachievablelatency over thefamily of
clustereddatapaths.

Thealgorithmproposedin this paperis a fundamentaltool for
theearlyexploration requiredto designspecializedclustereddata-
paths.To thebestof our knowledge,thisproblemhasnotbeenad-
dressedbefore,see4 5. Weformalizetheproblemunderconsidera-
tion in 4 2. Ournovel approachis basedon: (1) aneffectivedecom-
positionof the probleminto a sequenceof simplersub-problems;
and(2) an aggressive heuristicpruningof the largedesignspaces
definedby thesesub-problems.This is discussedin 4 3. Extensive
empiricalevidenceis provided in 4 4 showing that theapproachis
strikingly effectiveat attackingthisexceedinglycomplex problem.
Moreover, thediscussionsthereinillustratehow thealgorithmcan
beusedwithin ageneraldesignspaceexplorationframework. Con-
clusionsarepresentedin 4 6.
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Ourgoalis to supportearlyphasesof thedesignof VLIW machines
specializedto executetimecritical segments(kernels)of targetem-
beddedapplications.The identificationof thesetime critical seg-
ments,representedasbasicblocks,superblocks,etc.[10,9], is thus
performedprior to this explorationstep. Thesekernelsarerepre-
sentedasdataflow graphs(DFGs),i.e., in termsof aDAG,G ! V " E # ,
wherethenodesV representoperationsto becarriedout on data-
path functional resources,e.g., adds,multiplies, etc., alsocalled
activities,andtheedgesE ? V @ V representdataobjectsthatare
“produced”and“consumed”by activitiesduringtheflow of execu-
tion, seee.g.,Fig.3. As discussedin thesequel,theDFG modelof
theapplicationmaybemodifiedto includenodescorrespondingto
move/copy operations(i.e.,datatransfersacrossclusters)requiring
the interconnectresources.The locationof suchmovesonly be-
comesclearoncea datapathandbindingof functionaloperations
to thedatapath’s resourcesbegin to bespecified.

Theproblemto beaddressedis oneof simultaneousallocation
andbinding,subjectto coarsehierarchical“structuralconstraints.”
Weparameterizefamiliesof clustereddatapathsD ! m" n# asfollows.
Eachdatapathmay containseveral independentcomponents, see
e.g.,Fig.1. Eachindependentcomponent,in turn, containsa col-
lection of clusteredFUs, i.e., ALUs and multipliers that sharea
commonregisterfile. Theclusterswithin eachcomponentsharea
local interconnectstructurewith capacitynot exceedingm. Each
clusterhasno morethann FUs,but no limit is placedon thenum-
berof componentsandassociatedclustersthatcanbeinstantiated
in thedatapath.

A feasiblebinding of a DFG to a clustereddatapathspecifies
onwhichclustersactivitieswill (andcan)execute.Givenabinding
of adataflow to adatapathonecanscheduleactivitiessoasto min-
imizeexecutionlatency. Theproblemto beaddressedcanbestated
asfollows:

Problem1 TheproblemP ! m" n " DFG# is to find a datapathD A<B
D ! m" n# anda bindingandschedulingof theDFG to D A thatresults
in a small,if notminimal,executionlatency. We let T A ! m" n " DFG#
denotetheminimalexecutionlatencythatcanbeachieved.

Note that our coarseparameterizationof datapathsis aimed
at reducingthe size/complexity of the designspacefor an initial
explorationconductedat a high-level of abstraction.(This is not
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Figure1: A componentof aclusteredVLIW datapath.

unlike approachesto similar high-complexity CAD / compilation
problems,which typically resortto abstractionandproblemphas-
ing, seee.g.,[5, 10,9].) Specifically, we do not modellimitations
on register file capacitiesfor eachcluster, andonly considerda-
ta transfersof temporaryvaluesacrossclusters. Nevertheless,a
solution to our abstractproblemenablesan effective exploration
of a hugespaceof possibledesignsandthusdatapathspecializa-
tion along two critical dimensions:clusterand interconnectca-
pacities. Promisingdatapathconfigurationsare then considered
in moredetail, during subsequentphasesof the VLIW ASIP de-
sign/specializationprocess[11].

C ��7 D/)��E0 ��F/9G��)H��-/I.I/)J�*�LKNM %PO +J�����JI�����FH�QI.8R >0 �J7 0 S>�T��0 ) '
The pseudo-codebelow exhibits the main high-level tasksof the
proposedalgorithm. The algorithmincludestwo main decompo-
sitions. The first, performedby the function Gen-IDFGs, corre-
spondsto partitioningtheDFG into a setof independentDFGs,or
IDFGs, which canbe addressedseparately. Specifically, given a
DFG we considertheassociatedundirectedgraph,andidentify its
connectedcomponents.Eachconnectedcomponentcorrespondsto
an IDFG. Clearly, suchIDFGs constituteideal “chunks” of com-
putationthat can be performedon a single datapathcomponent,
requiringno local communicationwith other components.Thus
for eachIDFG thegoal is to find an “optimal” clusteredstructure
for theassociatedcomponent.

The seconddecomposition,which will be explainedin more
detail below, is usedto synthesizemulti clusterdatapathcompo-
nentssuitablefor eachIDFG. The key idea is to decomposean
IDFG into the operationswhich are the most difficult to handle.
Eachoperationis givenadifficultyrankingassessingthelikelihood
that latency penaltystepswill be incurreddue to limited cluster
or interconnectcapacity, i.e., resultingfrom serializingoperations
within aclusterdueto limited FU capacity, or from introducingda-
ta transfersacrossclusters.Givensucha ranking,we extracta set
of operationswith highestrankingsandconsiderthe inducedsub-
IDFG. Our approachthendeterminesdatapathclusters,bindings,
andapartialschedulewhicharesuitablefor theinducedsub-IDFG
in thesenseof minimizing latency penalties.Thenext IDFG sub-
problemis addressedin asimilar fashion.

In the sequelwe focuson the key conceptualcontributionsof
our approach,which arethe decompositionof an IDFG into sub-
problems,anda systematicmethodfor synthesizingmulti-cluster
datapathsolutionsfor suchsub-problems.



Algorithm (m,n,DFG,TL) U // initialization
TL =V max[TL, ASAP(DFG)];
solution= (datapath,binding,schedule,latency) = ! /0 " /0 " /0 " TL # ;
UpdateSolution(solution);
Set-IDFGs= GenIDFGs(DFG); // generatea setof IDFGs
for eachIDFG B Set-IDFG U // decomposition1

s1= oneClusterSolution(m,n,IDFG); // try 1 clustersolution
if ( latency(s1) W TL) U UpdateSolution(s1); X
elseU s2= multClusterSolution(m,n,IDFG);// decomposition2

if (latency(s2) Y latency(s1)) U // choosemin latencysolution
UpdateSolution(s2); X

else U UpdateSolution(s1);XXX return (solution); X
C,Z[$ :\0 ]H �-/7 ��^_��� '.` 0 ' D�aE- '  ���0 ) ' � ' +b+J8R �)c9dI/)/��0 ��0 ) '
Ouralgorithmkeepstrackof, andupdates,aglobalvariabledenot-
ed target latency TL e The target latency is eitherspecifiedby the
designeror setto betheas-soon-as-possible(ASAP)latency bound
for theDFG, denotedASAP(DFG).GivenTL, for eachoperation
o in theDFG,wecomputemobility(o) = ALAP(o) - ASAP(o), see
e.g.,Fig.3.1 Themobility correspondsto theoperation’s difficulty
ranking.Clearlyanoperationwith low mobility is likely to bedif-
ficult to handleasit hasfew temporaldegreesof freedomto deal
with possibleserializationor datatransfersamongclusters.

We will beprogressively constructinga globalsolution,i.e., a
datapath,abinding,aschedule,anda feasiblelatency for thecom-
pleteproblem,basedon consideringseveral sub-problems. Each
timeasub-problemis solved,thefunctionUpdateSolution() is in-
voked to updatethecurrentglobalsolution. This involvesseveral
tasks. First, if the sub-problemsolution exceedsthe currenttar-
get latency, the global solutionis updatedaccordingly. Then,the
sub-problemoperationsanddatatransfersareanchoredonthecor-
respondingschedulingsteps.Finally, themobility of operationsnot
yetanchoredis recomputed.

Theprimaryconsiderationdriving thealgorithmis to minimize
executionlatency. A secondaryconsiderationis to minimize the
numberof datatransfersamongclusters.Thusfor eachIDFG (or
IDFG sub-problem)the primary goal is to find a solution either
within thecurrenttargetlatency, or resultingin a minimal increase
in target latency. In eachcase,a singleclustersolution,generated
by oneClusterSolution(), anda multipleclustersolution,generat-
ed by multClusterSolution(), maybe obtained.The function la-
tency() returnstheexecutionlatency of asolutionto asub-problem.
To satisfythesecondarygoal,preferenceis alwaysgivento single
clustersolutionsthatcanachieve thecurrenttargetlatency, or pro-
vide thesameor betterlatency thatmulti-clustersolutions.This is
donein anattemptto reducethenumberof clustersanddatatrans-
fersin thefinal solution– seecommentsin 4 4.
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Figure2: Simplifiedproblemdecompositionstrategy.

Whena multi-clustersolutionis soughtfor a given IDFG, our
seconddecompositiontakesplace,seeFig.2. As mentionedprevi-
ously, multi-clustersolutionsareobtainedby first tackling a sub-
problemassociatedwith the mostdifficult setof operationsin an
IDFG, denotedsub-problem1. The function ExtractSubprob-
lem1(), calledwithin multClusterSolution(), extractsan induced

1ALAP(o) denotestheas-late-as-possiblestepof o for a givenTL.

sub-IDFGassociatedwith theoperationswith minimummobility,
denotedMM, andthosewith mobility MM f 1, if they haveadirect
produceror consumerwith mobility MM. Therationalefor includ-
ing the secondtype of operationsis that, if they wereboundto a
differentcluster, they would incur additionaldatatransfersreduc-
ing theirmobility by at leastone,andthusmakingthemasdifficult
to handleasoperationswith mobility MM e For our benchmarks,
this heuristicalwaysselectedmorethan60 % of theIDFG’s oper-
ations.For theexamplein Fig.3 theinducedsub-IDFGassociated
with extracting the first sub-problemis shown on the right. The
inducedsub-IDFGincludesthesubsetof nodessatisfyingthecrite-
rion, andedgesamongthosenodes.2 In thesimplestversionof our
algorithm,only oneadditionalsub-problemis considered,namely
ExtractSubproblem2(), associatedwith theoperationsnotconsid-
eredin thefirst sub-problem,seeFig.2.
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The key propertyunderlyingthis sub-problemdecomposition
for IDFGs is asfollows. The first problemis associatedwith the
most difficult operations,but includesonly a relaxed set of se-
quencingconstraints.This makesit usuallyeasierto solve, i.e., to
find asuitableclustereddatapathcomponent,bindingandschedule
resultingin a reducedlatency. If the first sub-problemcannotbe
solvedwithin thecurrenttargetlatency, theninvariablytheoriginal
IDFG wouldnotbefeasiblewithin thattargetlatency. Formalizing
andproving this factis simpleandgivesthefollowing:

Fact 3.1 SupposeadataflowgraphsubDFGinducedbya subsetof
operationsin a DFG. ThenT A ! m" n " subDFG#gW T A ! m" n " DFG# .
Thus,if thefirst sub-problemincursalatency penalty, i.e.,forcesan
increasein thecurrenttarget latency, thenthatpenaltywill persist
andtypically make thesecondsub-problemeasier, if not trivial, to
solve.

Multi-clusterdatapathcomponentsfor anIDFGaresynthesized
by decomposingtheIDFG intoseveralsingleclustersub-problems,
seeFig.2. Thesemay correspondto the two IDFG sub-problems
discussedabove,or furtherdecompositionsof theseto smallersub-
problems,asdiscussedin the next section. In progressively syn-
thesizinga multi-clustersolution,several singleclustersolutions
to partsof the IDFG arecomposed.In an attemptto reducethe
numberof clustersin thedatapathcomponents,prior to instantiat-
ing anew clusterandassigningit to anIDFG sub-problem,wefirst
attemptto bind andscheduletheassociatedoperationson existing
clusters. If the capacityavailable in suchclustersis insufficient,
i.e., if we fail to meetthe currenttarget latency, a new clusteris

2We alsoremove edgesthat traversea numberof schedulingstepsexceedingthe
themobility of theactivities thatwereextracted.



allocated,andits FU’s areselectedto leadto the smallestlatency
penaltyh for thesub-problemunderconsideration.

In this processthe executionlatency is evaluatedby schedul-
ing operationsandmoves usinga simplemodificationof the list
schedulingalgorithm[3] which is describedin thesequel.Moves,
i.e., datatransfersrequiringtheuseof the sharedinterconnectre-
source,areinsertedwhenoperationssharinganedgeareboundto
differentclusters.Thus,whena multi-clustercomponentis being
synthesized,the accruedloadon thesharedinterconnectresource
impactstheschedulingof move operationsassociatedwith eachof
theIDFG’ssub-problems.
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Let usfirst considerasimpleexamplewhereeachclustercanhave
at mostoneFU, i.e.,n q 1 e In thiscase,ideally, oneidentifieslong
independentstringsof operationsthatrequirethesametypeof FU
within the IDFG sub-problem,andbindssuchstringsto indepen-
dentclustersof the right type. By binding operationsalongsuch
string to the samecluster, oneavoids requiringdatatransfersfor
the edges(associateddataobjects)alongthe string. By ensuring
thestring includesoperationsof thesametype,oneavoidsa mis-
matchbetweenthe load placedon the clusterandthe capacityof
thecluster. This suggestsa generalheuristicto determinedatapath
clustersandoperationbindingsfor IDFG sub-problemsthatdonot
consistof independentstringsandwith nontrivial (n r 1# cluster
capacities.The ideais to find setsof operationscorrespondingto
sub-trees,ratherthanstrings.We call thesesetsvertical aggrega-
tionsandrecognizethatbindingsuchaggregationsto appropriate-
ly capacitatedclustersmight translateto reducedpenaltiesdueto
datatransfers.At the sametime, it is of interestto identify sets
of consecutive operationsthat have compatibleresourcerequire-
ments. We call thesehorizontalaggregationsandrecognizethat
bindingtheseto compatibleclustersmightalsoavoid excessive se-
rializationwithin limited capacityclusters.

Thus,ouralgorithmfirst determinesverticalandhorizontalag-
gregationsof operationsfor IDFG sub-problems.Basedon these,
it createspossiblepartitionsof its operations.By bindingeachele-
mentin thepartition,i.e.,setof operations,to acompatiblecluster,
wesynthesizecandidateclustereddatapathsandbindings.Theop-
erationsare thenscheduledto evaluatethe solution. We discuss
thesestepsin moredetailbelow.
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Given an extractedsub-IDFG,vertical

aggregationcreatesa collectionof subsetsof operationsu corre-
spondingto sub-treesin thesub-IDFG,seee.g.,Fig.4. Sinceverti-
cal aggregationis attemptedfor a sub-IDFGwhena singlecluster
solutionappearsto be inadequate/inferior(seeFig.2), onecanas-
sumeat leasttwo clustersarerequired.Thus,in attemptingto par-
tition the sub-IDFGinto vertical aggregates,we ensurethat there
alwaysexist at leasttwo ongoingsubtrees,i.e., clusterparallelism
to beexploited. As explainedbelow, this requirementtranslatesto
avoiding full merging, i.e., avoiding aggregatingall theoperations
within asingletreein any given“layer” of thesub-IDFG.

Verticalaggregatesaregeneratedin bothatop-down andbottom-
up fashion,consideringonelayerata time– a layercorrespondsto
the setof operationsfalling on a given stepin the ASAP sched-
ule for thesub-IDFG.For thetop-down case,webegin by positing
thateachactivity in thetop layer(initialized to thefirst stepof its
ASAP schedule)correspondsto anindependenttree. At eachstep
oneconsidersgrowing and/ormerging treeson theprevious layer
following theedgesbetweenoperationsin thetwo layers,seee.g.,
Fig.4. Suchgrowing/merging takesplaceonly if (1) the resulting
aggregatescorrespondto subtreesand (2) have not resultedin a
single aggregate, i.e., full merging of all the operationsbetween
the currentlayer andthe top layer. Whensuchgrowing/merging

of treesviolatesoneof theseconditions(seee.g. the transitions
from Layer 4 to 5 in Fig.4) the currentsubsets,e.g.,V1 andV2,
areaddedto the collectionof vertical top-down aggregations u t ,
andthe processrestartswith the currentlayerasthe new top lay-
er. Thus,for our example,Layer5 becomesthenew top layerand
theactivities in thelayerareassumedto correspondto independent
trees.In ourexamplethetransitionfrom Layer5 to 6 againleadsto
a full merging,andthusthesetsV3 andV4 with singleoperations
areaddedto u t , andthe processrestartson Layer 6, resultingin
two additionalverticalaggregationsetsV5 andV6. In the sequel
we will referto aggregationsthatcontainonly oneoperation,asis
thecasefor V3 andV4 " astrivial andwill attemptto merge these
with largerverticalor horizontalaggregates.
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Bottom-upverticalaggregations,denotedby u b, aregenerated
in thesamefashionbut startingfrom thebottom.Althoughfor our
examplethey resultin thesameaggregations,in generalthis is not
thecase.Sincethesub-IDFGis a DAG, identificationof theverti-
cal aggregatesis straightforward having only linearcomplexity in
the numberof nodes.Finally, we notethat a morerefinedmodel
for verticalaggregationcould be obtainedby hierarchicallykeep-
ing track of all merge pointsseenin this process.Until now, we
have foundthatin practicethesefinegrainedpartitionsarenotuse-
ful, i.e.,evenwhendatatransferdelaysaresmall(1 cycle),scatter-
ing smallaggregatesacrossmany clusterswasnever advantageous
from a latency pointof view, see4 4.
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The horizontalaggregationstepcre-

atesa collectionof aggregatesw correspondingto sub-IDFGop-
erationsonconsecutive layerswith compatibleloads.To doso,we
determinetheloadprofile for theoperationsoneachlayer, e.g.,the
multiplier loadmultload! i # on layer i is thesumof ! mobility ! o#�f
1#yx 1 for all operationson layer i requiringa multiplier. We com-
putethe ALU load, ALUload! i # , in a similar fashion.3 Intuitive-
ly the resourceload on two layersis compatibleif thereexists a
cluster type that is a good matchfor both. Recall that a feasi-
ble clustertypeis definedby thenumberof ALUs andmultipliers
it includes,so long as their sum doesnot exceedour constrain-
t n. We definea notion of load compatibility for a constraintn
as follows. For eachlayer i we determinethe setof all feasible
clusterstypes,CT ! i # thatwould be ableto supportthe layer’s re-
sourceloadin a minimumnumberof steps- nonintegral loadsare
roundedup. Two (or more) consecutive layers,say i and i f 1,
are said to be compatibleif CT ! i #/z CT ! i f 1#L{q /0 " i.e., if there

3Thismeasureof loadaccountsfor thefactthatactivitieswith highermobility have
moreflexibility in their schedulingranges,andthusshouldhave lower importancein
termsof assessingcompatibilityamonglayers.



exists a clustertype that would be ableto supporttheir individu-
al loads| in a minimal numberof steps. For illustration purposes,
considera hypotheticalexampleincludingthe following consecu-
tive layers:Layer1, with ALUload! 1#gq 2 andmultload! 1#}q 2;
Layer 2, with ALUload! 2#~q 2 andmultload! 2#�q 0; andLayer
3, with ALUload! 3#gq 3 andmultload! 3#gq 0. Assuminga clus-
ter capacityn q 3, thecorrespondingfeasibleclustertypeswould
beCT ! 1#�q�� 2A1M " 1A2M � , CT ! 2#�q�� 2A1M " 3A � , andCT ! 3#�q� 3A � . For thisexample,Layers1 and2 wouldbecompatiblesince
CT ! 1#/z CT ! 2#~q�� 2A1M �p{q /0 e Similarly, Layers2 and3 would
becompatiblesinceCT ! 2#Rz CT ! 3#�q�� 3A��{q /0 e

Fig.5 exhibitsCT ! i # whenn q 2 for our example. Layersi q
5 " 6 " 7 haveCT ! i #�q�� 2A � (i.e.,clusterswith 2 ALUs) andarethus
jointly compatible,soasinglehorizontalaggregationof operations,
thesetH1, is placedin thecollectionw . In generalw includesthe
largestsetsof compatiblehorizontalaggregations.Sinceournotion
of loadcompatibilityamonglayersis not transitive, in somecases
suchaggregatesmayoverlap.Forexample,in thehypotheticalcase
introducedabove, the horizontalaggregationformedby Layers1
and2 is not compatiblewith that formedby Layers2 and3, since� 2A1M �~zp� 3A ��q /0. Thus,two distinct (overlapping)horizontal
aggregationswouldhavebeenformed.
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Figure5: Horizontalaggregation.
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Thethird stepin determiningamulti-

clustersolutionis to jointly searchfor a “good” overall partitionof
sub-IDFGoperationsandcorrespondingbindingof thesepartitions
to suitableclustertypes.Althoughthisis averycomplex taskwhen
a flat designspaceis considered,in our approachthesearchspace
is dramaticallyreducedby the horizontalandvertical aggregates
determinedin theprevioustwo steps.

Specifically, ouroptimizationheuristicproceedsasfollows.
Basedon u t , u b and w , we createcoveringsof the sub-IDFG’s
operations.4 In fact,we systematicallygenerateseveral suchcov-
erings,asfollows: (1) onebasedon u t ; (2) onebasedon u b; and
(3) severalbasedononeor moresetsin w , coveringeachof theun-
coveredhorizontalslicesentirelywith elementsof either u t or u b e
In mostcaseswe have but a few horizontalaggregations,leading
to a limited numberof possiblecovers. In this processwe ensure
thatno setin a cover is fully containedwithin another, but cannot
ensurethattheobtainedcoversarein factpartitions.

In thenext phaseof ouralgorithmweexhaustively deriveparti-
tionsfrom eachof theobtainedcovers,i.e.,any operationthatis in-
cludedin twoormoresetsin acoveris removedandassignedto on-
ly oneof them. Furtherboundaryperturbationscreatingaddition-

4A coveringis acollectionof setssuchthattheunionincludesall theoperationsin
thesub-IDFGanda partition is acover of disjointsets.

al partitionscanbe useful,e.g.,merging trivial vertical aggrega-
tion setswith neighboringaggregatesor shifting operationsacross
aggregatesin layerswherethe interconnectcapacityhasbeenex-
hausted.Becausetheseperturbationsinvolve only operationson
the boundariesbetweenlarge aggregates,the demandsin gener-
ating thesearenot excessive. This processeventuallytransforms
eachcover into oneof many possiblepartitions,seee.g.Fig.6. Al-
thoughthisprocesscangrow exponentiallyin complexity, in prac-
tice thenumberof covers/partitionsthatweregeneratedin all our
casestudiesdid not justify any furtherpruning.Specifically, given
apartition,anexhaustivegenerationof boundaryperturbationsand
schedulingof the correspondingalternativestook no morethana
few secondson anSunUltraSparcI for thebenchmarksshown in
Table1.

Alternativemulti-clusterdatapathsarethengeneratedbasedon
thesepartitions. Eachelementin a partitioncorrespondsto a sin-
gleclusterproblem,thusit makessenseto considerpartitionswith
the fewestnumberof setsfirst. As discussedin 4 3.1 andshown
in Fig.2,singleclustersolutionsto eachpartitionarecomposedto
generatemulti-clustersolutionsto the(sub)IDFG,which arecom-
paredbasedon theexecutionlatency they achieve.

For our ongoingexample,Fig.6 shows the bestpartition. The
suitableclustertypeswhen n q 2 were determinedto be 1A1M
(i.e.,1 ALU and1 multiplier) and2A, asshown in thefigure. The
minimum latency schedule(for interconnectcapacitym q 2) was
determinedto be10 steps,which is optimal for thegivencapacity
constraints.At this point thesolutionfor sub-problem2 would be
generated.
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Figure6: Generatingcovers,partitions,andderiving clusterstypes.
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Executionlatenciesaredetermined

usingthefollowing modifiedlist schedulingalgorithms.Givenan
IDFG, its first sub-problemis scheduled(for the derived binding)
usinga standardlist schedulingpriority function (longestpathto
any sinkoperation),enhancedby atie breakingpolicy. Specifically,
in thecaseof atie,operationsthatareancestorsof moveoperations
aregivenhigherpriority. Whenanoperationcannotbescheduled
within its time frame5, TL is incremented,thetime framesareup-
dated,andthealgorithmis repeated.

Recallthat,whena solutionfor anIDFG’sfirst sub-problemis
found, the operationsof the sub-IDFG,including moves,arean-
choredto their associatedschedulingsteps,and the time frames
andmobility of theremainingoperationsarerecomputed.Accord-
ingly, schedulingfor anIDFG’s secondsub-problemis performed

5Thetimeframeof anoperationo is givenby � ASAP� o�s� ALAP � o�(� .



asfollows. A modifiedlist schedulingalgorithmtraversesschedul-
ing steps� from 1 to TL and,at eachstep,schedulesasmany ready
operations6 asavailableresourcespermit,usingmobility asthepri-
ority function. As in the previous case,if a tie occurs,priority is
giventonodeswhichareancestorsof unscheduledmoves.Whenan
operationcannotbe scheduledwithin its time frame,the schedul-
ing processstops,theanchoringof all operationsis released,andan
overall schedulingis performedfor thesamebindingfunctionand
the sameinitial target latency, usingthe list schedulingalgorithm
describedin thepreviousparagraph.
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Table1 shows the resultsproducedby our algorithmfor a num-
berof representativebenchmarkkernels.For simplicity, operations
anddatatransferswereassumedto take 1 cycle in all testcases,
but our approachis general.ThethreeDiscreteCosineTransform
(DCT) algorithms(Lee,DIT andDIF [8]) typify complex kernels
with high potentialfor ILP. Thethreefilters (Elliptic, Autoregres-
sionandAvenhaus[6]) typify complex kernelswith lesspotential
for ILP. Informationon thenumberof connectedcomponents(ID-
FGs),theircritical path(i.e.,absoluteminimumlatency), andnum-
ber of operationsfor eachIDFG is provided in Column 1. For
eachbenchmark,weconsidereddatapathswith interconnectcapac-
ity m q 2 andclustercapacityconstraintsof n q 2 " 3 " 4 e For eachof
the 18 probleminstancesconsidered,the derived clustereddatap-
athandtheassociatedachievablelatency L areshown in thetable.
Also shown is thetotal numberof datatransfers,abbreviatedDTs,
with subtotalsperdatapathcomponent.

We startby notingthatour algorithmconsistentlyfoundmini-
mumlatency penaltysolutionsfor thespecifiedcapacityconstraints,
strongly suggestingthat our aggressive designspacepruning is
effective.7 Moreover, for all casesbut one, the achievable laten-
cy wasdrivenby sub-problem1 of anIDFG, confirmingtheeffec-
tivenessof our decompositionheuristicbasedon difficulty rank-
ings. The exceptionoccurredfor the DIT DCT benchmark,with
constraints! m" n#�q�! 2 " 4#�e In thiscase,contentionfor interconnect
resourcescausedanadditionallatency penaltyof 1 stepfor thesec-
ondsub-problemassociatedwith theIDFG. (Notethat this bench-
markhasa singleIDFG with 48 nodesandcritical pathof 7 steps,
thuscontentionon the local interconnectfor the datapathcompo-
nentwaslikely tooccur, if ahighdegreeof ILP wasto beachieved.)
Notehowever thatthisdid notoccurfor clustercapacitiesn q 2 " 3 e
In thesetwo casesanincreasedlatency penaltyresultedfrom sub-
problem1, which wassufficient to allow a solutionfor therestof
theIDFG without furtherlatency increases/penalties.

Theresultsin Table1 show thatsolutionsderivedfor largerca-
pacity clusterconstraintsmay have the samelatency asthosefor
smallercapacityconstraints,seee.g., DCT Lee and WDE filter
for n q 2 " 3 e Note however that the solutionsassociatedwith the
larger capacityclustershave fewer clusters(with moreFUs), and
typically have fewer datatransfers.This clearlyshows thebiasof
our algorithmtowardsserialization– solutionsthataddextra steps
by serializingoperationsinsidea clusterarefavoredwith respect
to solutionsscatteringtheseoperationsthroughvarious(possibly
smaller)clusters,andyet payingthe samelatency penaltydueto
datatransferdelays. More concretely, the proposedalgorithmis
biasedtowardssolutionsthat usefewer clustersof highercapaci-
ty, asopposedto usingmoreclustersof capacitysmallerthanthat
specifiedin theconstraint.Theunderlyingrationaleis that,when
latency is identical,the first solutionswill typically leadto fewer

6An unscheduledoperationis saidto bereadyatsteps if s is in its time frame.
7Duethehighcomplexity of theoptimizationproblembeingtackled,verifying the

optimality of a solutionwith respectto latency is virtually impossible.However, in
all caseswe have determinedby inspectionthat for thegivencapacityconstraintsthe
latency penaltystepscouldnotbereduced.

Benchmarks (m,n) L Datapath # DTs
DCT-Lee: 49 ops (29 ad-
d/subs,20 mults)2 IDFGs,

(2,4) 10 IDFG1:2(2A2M)=2 5

CP=9 IDFG2: (2A2M)=1 (5+0)
IDFG1:28 ops,CP=9 (2,3) 12 IDFG1:

(2A1M)+(1A1M)=2
5

IDFG2: (2A1M)=1 (5+0)
IDFG2:21 ops,CP=7 (2,2) 12 IDFG1:3(lA1M)=3 11

IDFG2:2(lA1M)=2 (7+4)
DCT-DIF: 41 ops (29 ad-
d/subs,12 mults)2 IDFGs,

(2,4) 9 IDFG1:2(2A2M)=2 2

CP=7 IDFG2: (2A1M)=1 (2+0)
IDFG1:24 ops,CP=7 (2,3) 10 IDFG1:2(2A1M)=2 2

IDFG2: (2A1M)=1 (2+0)
IDFG2:17 ops,CP=5 (2,2) 13 IDFG1:2(lA1M)=2 2

IDFG2:1(lA1M)=1 (2+0)
DCT-DIT : 48 ops (36 ad-
d/subs,12 mults) 1 IDFG,
CP=7

(2,4) 9 IDFG1: (4A)+
(3A1M)+2(2A2M)=4

9

IDFG1:48 ops,CP=7 (2,3) 10 IDFG1: 2(3A)+
2(2A1M)+(1A1M)=5

11

(2,2) 11 IDFG1:
3(2A)+4(lA1M)=7

16

5th order WDE Filter : 34
ops(26 add/subs,8 mults)1
IDFG, CP=14

(2,4) 14 IDFG1:
(2A2M)+(2A1M)=2

3

IDFG1:34 ops,CP=14 (2,3) 15 IDFG1:
(2A1M)+(1A1M)=2

2

(2,2) 15 IDFG1:3(lA1M)=3 7
Auto RegressionFilter : 28
ops(12 add/subs,16 mults)
1 IDFG, CP=8

(2,4) 10 IDFG1:2(1A2M)=2 4

IDFG1:28 ops,CP=8 (2,3) 10 IDFG1:2(1A2M)=2 4
(2,2) 11 IDFG1:2(lA1M)=2 4

AvenhausFilter : 18 ops(8
add/subs,10mults)1 IDFG,
CP=7

(2,4) 8 IDFG1:
(1A2M)+(1A1M)=2

3

IDFG1:18 ops,CP=7 (2,3) 8 IDFG1:
(1A2M)+(1A1M)=2

3

(2,2) 9 IDFG1:2(lA1M)=2 2

Table1: Experimentalresults.

datatransfers.Finally, notethat for theAutoregressionandAven-
housfilters,thesolutionswith m q 3 " 4 areidentical.This indicates
that the extra clustercapacitydoesnot help with theseparticular
kernels.

Other interestingobservationscould be drawn from our case
studies.Considerfor examplethetwo alternative DCT algorithms
(DIT andDIF) shown in thetable.AlthoughtheDCT-DIT algorith-
m hasroughly20% moreoperationsthantheDCT-DIF algorithm,
it executesfasteron a family with clustercapacity2, andhasiden-
tical latency for largercapacities.Suchnon-trivial observationscan
be usefulwhenperformingalgorithmicexplorationin the context
of agivenembeddedapplication.

Weconcludeby briefly discussinghow theproposedalgorithm
canbe usedto supporttrade-off exploration. Consideragainthe
solutionfor theDIT DCT with a clustercapacityof 4. The“min-
imum” latency solutiongeneratedby the algorithmhas4 clusters
and9 steps,i.e.,2 stepsin excessof thecritical path.If thedesigner
findsthis numberof clustersto beexcessive, s/hecanincreasethe
target latency andexecutethe algorithmoncemore for the same
capacityconstraints.As thedesignerincreasestheinitial targetla-
tency, thenumberof clustersin thesolutionwill eventuallyreduce.
Thus,thedesignercanexploretrade-offs betweenlatency andclus-
ter area.8 Delay/power vs. latency trade-offs canbe exploredby
consideringdifferentcapacityconstraints.Indeed,astheconstraint
on clustercapacityincreases,fewer stepsaretypically requiredto
executethe samekernel,yet the registerfile local to eachcluster
will have moreportsandbelarger, andthusdelayandpower con-

8Clusterareaestimationis beyondthescopeof this paper.



sumptionwill increase9 [14]. Ourproposedalgorithmcanthusplay
akey� role in adesignspaceexplorationenvironment/framework.
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A significantbodyof work is availablein theareaof datapathsyn-
thesisfor digital signalprocessingapplications,seee.g.,[3, 5]. Our
focusis onapproachesgearedtowardshighthroughputapplication-
s,e.g.,[5, 2,4, 15]. Theuseof hierarchyin theDFGandin thedat-
apathis an importantcommoncharacteristicof suchapproaches.
Below we briefly contrastour work with the Cathedralcompilers
developedat IMEC[5]– a representativeexample.

CathedralusesanApplicationSpecificUnit (ASU) basedarchi-
tectural style[5]. ASUsaredatapathswhosecompositionin terms
of functionalbuilding blocks(i.e.,FUs)andinterconnectionstruc-
ture is customizedto partsof the applicationflow graph,i.e., to
judiciously selectedclustersof operations.Below we argue that
the designspacedefinedby the ASU-basedarchitecturalstyle is
not compatiblewith theproblemhandledin this paper. Specifical-
ly, our VLIW datapathclustersare fundamentallydifferent from
ASUs,andthussoaretheobjectivesdriving theaggregationof op-
erationsto beexecutedon thesehierarchicaldatapathcomponents.
ASUs do not includepermanentstorage,i.e., registersor register
files. Switchingof dataamongtheFUsinternalto anASU is done
only throughinterconnectandMUXES. Thus,no resourcesharing
is allowedwithin anASU.By contrast,in ourclusteredVLIW data-
paths,acluster’s local registerfile is usedto switchdataamongthe
cluster’s FUs. Moreover, resourcesharingwithin a cluster(while
executinganaggregate)is not only possible,but highly desirable.
In summary, looselyspeaking,Cathedralcreatesdatapathsbased
onsingleASU “clusters”– notethat,ata laterstepin thestructural
hierarchyguidingthesynthesisprocess,dedicatedregisterfiles are
allocatedto theinputsof eachASU. Similarcontrastscanbemade
to otherhigh-level synthesisapproaches,showing thattheir adopt-
ed structural hierarchy definesa designspaceincompatiblewith
theproblemaddressedin thispaper.

Retargetablecodegenerationhasreceivedsignificantattention
lately, seee.g.,[9, 10]. As in thepreviouscase,thealgorithmsde-
velopedfor codegenerationsolve optimizationproblemsdifferent
from ours. During codegeneration,operationassignmentto clus-
ters(i.e., binding) andothercodegenerationtasksareperformed
assumingaspecifictargetdatapath.In contrast,in ourapproachthe
binding of operations(aggregates)to clustersis performedfor an
“optimal” datapaththat is beingsimultaneouslygenerated. Deriv-
ing optimalcodefor a specified/targetVLIW clustereddatapathis
a differentproblemfrom that of efficiently finding a VLIW clus-
tereddatapaththatcandeliver “maximum” performance,underthe
specifiedcapacityconstraints.

Several lower boundson latency have beenproposed,seee.g.
[12, 16, 7]. Suchwork usuallyassumesapre-defineddatapathwith
a ‘flat’ organizationof FUs[12,16]. An exceptionis [7]. In this
case,a lower boundon latency is computedfor a DFG boundto a
specificclusteredVLIW datapath.By contrast,theobjectiveof our
algorithmis to estimatetheminimumlatency thatcanbeachieved
for a given DFG over a family of clusteredVLIW datapathsde-
fined by the specifiedcapacityconstraints.Thus,onceagainthe
problemsarequitedistinct.
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We proposedanalgorithmto supporttrade-off explorationduring
theearlyphasesof thedesignof VLIW ASIPswith clustereddata-
paths.Encouragingexperimentalresultsobtainedfor a numberof
benchmarkkernels,assumingvariousclustercapacities,show that

9Delayandpowerestimationarebeyondthescopeof this paper.

ouraggressiveheuristicdecompositionandpruningstrategieswork
quitewell in practice.We arecurrentlyworking on incorporating
high-level memorysystemdesignissuesin ourdesignspaceexplo-
rationframework – thesewill beconsideredprior to theexploration
stepdiscussedin thispaper.
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